Code: 20EC3602

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

ANTENNAS AND PROPAGATION (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	CO	Max.				
					Marks				
UNIT-I									
1	a)	Discuss the following terms	L2	CO1,	7 M				
		i. Power gain		CO2					
		ii. Antenna efficiency							
		iii. Effective area							
	b)	Determine the electric field intensity at a	L3	CO1,	7 M				
		distance of 10km from an antenna having		CO2					
		directive Gain of 5dB and radiating a total							
		power of 20 KW?							
OR									
2	a)	Explain the concept of Polarization in	L2	CO1,	7 M				
		Antennas.		CO2					
	b)	Demonstrate directional and	L3	CO1,	7 M				
		omnidirectional patterns of Antennas.		CO2					

		UNIT-II			
3	a)	Derive an expression of Radiation	L4	CO2,	7 M
		resistance of Small current element.		CO3	
	b)	Explain the working of loop Antenna and	L2	CO2,	7 M
		how it can be used for direction finding.		CO3	
		OR			
4	a)	Derive the expression for power radiated	L4	CO2,	7 M
		and radiation resistance by a quarter wave		CO3	
		monopole (λ/4) Antenna?			
	b)	Draw and explain the operation of axial	L2	CO2,	7 M
		mode of radiation of Helical antenna.		CO3	
		UNIT-III			
5	a)	Derive maxima, minima half power point	L4	CO2,	7 M
		directions with two point sources are fed		CO3	
		with currents equal in magnitude and			
		opposite in phase.			
	b)	An end fire array with elements spaced at	L3	CO2,	7 M
		$\lambda/2$ and with axis of elements at right angles		CO3	
		to the line of array is required to have a			
		directivity of 36. Determine array length			
		and width of major lobe?			
		OR	_	T	
6	a)	Explain Binomial array with neat diagram.	L2	CO2,	7 M
				CO3	
	b)	A linear broadside array consists of four	L3	CO2,	7 M
		equal isotropic in-phase point sources with		CO3	
		spacing equal to $\lambda/3$. Calculate the			
		directivity and beam width if the total			
		length of the array is λ .			

		UNIT-IV			
7	a)	Explain the features of Yagi-uda array.	L2	CO2,	7 M
ı				CO3	
	b)	With suitable diagram explain Microstrip	L4	CO2,	7 M
		antenna and derive the expression for		CO3	
		characteristic impedance and directivity?			
		OR			
8	a)	Explain different types of reflector antennas	L2	CO2,	7 M
		with neat diagram.		CO3	
	b)	A circular parabolic reflector having the	L3	CO2,	7 M
		directivity of 20 dB, frequency of 10 MHz		CO3	
		and effective aperture of 2m. Calculate the			
		mouth diameter and illumination efficiency.			
		UNIT-V			
9	a)	Explain the terms	L2	CO1,	7 M
		i. Refraction		CO4	
		ii. Lowest Usable Frequency (LUF)			
		iii. Virtual height			
	b)	Derive an expression for the refractive	L4	CO1,	7 M
		index of the ionosphere in terms of 'N' and		CO4	
		frequency.			
	1	OR	1		
10	a)	Explain space wave propagation with neat	L2	CO1,	7 M
		diagram.		CO4	
	b)	Distinguish between skip distance and	L4	CO1,	7 M
		virtual height. Give suitable sketches.		CO4	